Search results
Results from the WOW.Com Content Network
Brunauer, Emmett and Teller's model of multilayer adsorption is a random distribution of molecules on the material surface. Adsorption is the adhesion [1] of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. [2] This process creates a film of the adsorbate on the surface of the adsorbent.
BET model of multilayer adsorption, that is, a random distribution of sites covered by one, two, three, etc., adsorbate molecules. The concept of the theory is an extension of the Langmuir theory, which is a theory for monolayer molecular adsorption, to multilayer adsorption with the following hypotheses:
The adsorption sites (heavy dots) are equivalent and can have unit occupancy. Also, the adsorbates are immobile on the surface. The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes.
The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is
The Hertz–Knudsen equation describes the non-dissociative adsorption of a gas molecule on a surface by expressing the variation of the number of molecules impacting on the surfaces per unit of time as a function of the pressure of the gas and other parameters which characterise both the gas phase molecule and the surface: [1] [2]
Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters (adparticles) at solid material surfaces. [1] The process can generally be thought of in terms of particles jumping between adjacent adsorption sites on a surface, as in figure 1.
Dissociative adsorption is a process in which a molecule adsorbs onto a surface and simultaneously dissociates into two or more fragments. This process is the basis of many applications, particularly in heterogeneous catalysis reactions.
The coefficient is a function of surface temperature, surface coverage (θ) and structural details as well as the kinetic energy of the impinging particles. The original formulation was for molecules adsorbing from the gas phase and the equation was later extended to adsorption from the liquid phase by comparison with molecular dynamics ...