enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    For example, if we want to round 1.2459 to 3 significant figures, then this step results in 1.25. If the n + 1 digit is 5 not followed by other digits or followed by only zeros, then rounding requires a tie-breaking rule. For example, to round 1.25 to 2 significant figures: Round half away from zero rounds up to 1.3.

  3. False precision - Wikipedia

    en.wikipedia.org/wiki/False_precision

    False precision (also called overprecision, fake precision, misplaced precision, and spurious precision) occurs when numerical data are presented in a manner that implies better precision than is justified; since precision is a limit to accuracy (in the ISO definition of accuracy), this often leads to overconfidence in the accuracy, named precision bias.

  4. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    This is one method used when rounding to significant figures due to its simplicity. This method, also known as commercial rounding, [citation needed] treats positive and negative values symmetrically, and therefore is free of overall positive/negative bias if the original numbers are positive or negative with equal probability. It does, however ...

  5. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...

  6. Catastrophic cancellation - Wikipedia

    en.wikipedia.org/wiki/Catastrophic_cancellation

    Catastrophic cancellation may happen even if the difference is computed exactly, as in the example above—it is not a property of any particular kind of arithmetic like floating-point arithmetic; rather, it is inherent to subtraction, when the inputs are approximations themselves.

  7. Round number - Wikipedia

    en.wikipedia.org/wiki/Round_number

    A round number is an integer that ends with one or more "0"s (zero-digit) in a given base. [1] So, 590 is rounder than 592, but 590 is less round than 600. In both technical and informal language, a round number is often interpreted to stand for a value or values near to the nominal value expressed.

  8. Unit in the last place - Wikipedia

    en.wikipedia.org/wiki/Unit_in_the_last_place

    Here we start with 0 in single precision (binary32) and repeatedly add 1 until the operation does not change the value. Since the significand for a single-precision number contains 24 bits, the first integer that is not exactly representable is 2 24 +1, and this value rounds to 2 24 in round to nearest, ties to even.

  9. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    One of the first programming languages to provide single- and double-precision floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language designers.