Search results
Results from the WOW.Com Content Network
This is the most common state for finished articles such as tools and machine parts. In contrast, the same steel composition in annealed state is softer, as required for forming and machining. Depending on the temperature and composition of the steel, it can be hardened or softened. To make steel harder, it must be heated to very high temperatures.
A Rockwell hardness tester. The Rockwell hardness test is a hardness test based on indentation hardness of a material. The Rockwell test measures the depth of penetration of an indenter under a large load (major load) compared to the penetration made by a preload (minor load). [1]
Steel can be softened to a very malleable state through annealing, or it can be hardened to a state as hard and brittle as glass by quenching. However, in its hardened state, steel is usually far too brittle, lacking the fracture toughness to be useful for most applications. Tempering is a method used to decrease the hardness, thereby ...
This causes carbon to diffuse into the surface of the steel. The depth of this high carbon layer depends on the exposure time, but 0.5mm is a typical case depth. Once this has been done the steel must be heated and quenched to harden this higher carbon 'skin'. Below this skin, the steel core will remain soft due to its low carbon content.
RHA is homogeneous because its structure and composition are uniform throughout its thickness. The opposite of homogeneous steel plate is cemented or face-hardened steel plate, where the face of the steel is composed differently from the substrate. The face of the steel, which starts as an RHA plate, is hardened by a heat-treatment process.
The work-hardened steel bar has a large enough number of dislocations that the strain field interaction prevents all plastic deformation. Subsequent deformation requires a stress that varies linearly with the strain observed, the slope of the graph of stress vs. strain is the modulus of elasticity, as usual.
Martensitic transformation, more commonly known as quenching and tempering, is a hardening mechanism specific for steel. The steel must be heated to a temperature where the iron phase changes from ferrite into austenite, i.e. changes crystal structure from BCC (body-centered cubic) to FCC (face-centered cubic). In austenitic form, steel can ...
The cooling rate will be highest at the end being quenched, and will decrease as distance from the end increases. Subsequent to cooling a flat surface is ground on the test piece and the hardenability is then found by measuring the hardness along the bar. The farther away from the quenched end that the hardness extends, the higher the ...