Search results
Results from the WOW.Com Content Network
These three views are known as front view (also elevation view), top view or plan view and end view (also profile view or section view). When the plane or axis of the object depicted is not parallel to the projection plane, and where multiple sides of an object are visible in the same image, it is called an auxiliary view .
In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.
Selecting reference points. In two dimensions, given an ordered set of three or more connected vertices (points) (such as in connect-the-dots) which forms a simple polygon, the orientation of the resulting polygon is directly related to the sign of the angle at any vertex of the convex hull of the polygon, for example, of the angle ABC in the picture.
It is always possible to partition a concave polygon into a set of convex polygons. A polynomial-time algorithm for finding a decomposition into as few convex polygons as possible is described by Chazelle & Dobkin (1985). [5] A triangle can never be concave, but there exist concave polygons with n sides for any n > 3.
Polygons with only one concave vertex can always be fan triangulated, as long as the diagonals are drawn from the concave vertex. It can be known if a polygon can be fan triangulated by solving the Art gallery problem, in order to determine whether there is at least one vertex that is visible from every point in the polygon.
The boundary of a Reuleaux triangle is a constant width curve based on an equilateral triangle. All points on a side are equidistant from the opposite vertex. A Reuleaux triangle is a curved triangle with constant width, the simplest and best known curve of constant width other than the circle. [1]
A general approach that works for non-simple polygons as well would be to choose a line not parallel to any of the sides of the polygon and draw a line parallel to this one through each of the vertices of the polygon. This will divide the polygon into triangles and trapezoids, which in turn can be converted into triangles.
Many results about plane figures are proved, for example, "In any triangle, two angles taken together in any manner are less than two right angles." (Book I proposition 17) and the Pythagorean theorem "In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle ...