Search results
Results from the WOW.Com Content Network
Free-electron lasers have been developed for use in X-ray diffraction and crystallography. [27] These are the brightest X-ray sources currently available; with the X-rays coming in femtosecond bursts. The intensity of the source is such that atomic resolution diffraction patterns can be resolved for crystals otherwise too small for collection.
A USAF 1951 resolution chart in PDF format is provided by Yoshihiko Takinami. This chart should be printed such that the side of the square of the 1st element of the group -2 should be 10 mm long. USAF 1951 Resolution Target Further explanations and examples; Koren 2003: Norman Koren's updated resolution chart better suited for computer analysis
Three-dimensional X-ray diffraction (3DXRD) is a microscopy technique using hard X-rays (with energy in the 30-100 keV range) to investigate the internal structure of polycrystalline materials in three dimensions.
In structural biology, resolution can be broken down into 4 groups: (1) sub-atomic, when information about the electron density is obtained and quantum effects can be studied, (2) atomic, individual atoms are visible and an accurate three-dimensional model can be constructed, (3) helical, secondary structure, such as alpha helices and beta sheets; RNA helices (in ribosomes), (4) domain, no ...
X-ray diffraction computed tomography is an experimental technique that combines X-ray diffraction with the computed tomography data acquisition approach. X-ray diffraction (XRD) computed tomography (CT) was first introduced in 1987 by Harding et al. [ 1 ] using a laboratory diffractometer and a monochromatic X-ray pencil beam .
X-ray diffraction is a non destructive method of characterization of solid materials. When X-rays are directed at solids they scatter in predictable patterns based on the internal structure of the solid. A crystalline solid consists of regularly spaced atoms (electrons) that can be described by imaginary planes.
Wavelength-dispersive X-ray spectroscopy (WDXS or WDS) is a non-destructive analysis technique used to obtain elemental information about a range of materials by measuring characteristic x-rays within a small wavelength range.
Reflection positions and intensities of known crystal phases, mostly from X-ray diffraction data, are stored, as d-I data pairs, in the Powder Diffraction File database. The list of d-I data pairs is highly characteristic of a crystal phase and, thus, suitable for the identification, also called ‘fingerprinting’, of crystal phases.