Search results
Results from the WOW.Com Content Network
Those who can see their environments often do not readily perceive echoes from nearby objects, due to an echo suppression phenomenon brought on by the precedence effect. However, with training, sighted individuals with normal hearing can learn to avoid obstacles using only sound, showing that echolocation is a general human ability. [9]
"Sonar" can refer to one of two types of technology: passive sonar means listening for the sound made by vessels; active sonar means emitting pulses of sounds and listening for echoes. Sonar may be used as a means of acoustic location and of measurement of the echo characteristics of "targets" in the water. [4]
Sonar (sound navigation and ranging) is a technique that uses sound propagation under water (or occasionally in air) to navigate, communicate or to detect other vessels. There are two kinds of sonar – active and passive. A single active sonar can localize in range and bearing as well as measuring radial speed.
Sonar systems are generally used underwater for range finding and detection. Active sonar emits an acoustic signal, or pulse of sound, into the water. The sound bounces off the target object and returns an echo to the sonar transducer. Unlike active sonar, passive sonar does not emit its own signal, which is an advantage for military vessels.
Sonar uses sound source localization techniques to identify the location of a target. 3D sound localization is also used for effective human-robot interaction. With the increasing demand for robotic hearing, some applications of 3D sound localization such as human-machine interface, handicapped aid, and military applications, are being explored ...
This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz. Ultrasound is used in many different fields.
Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.
Systems typically use a transducer that generates sound waves in the ultrasonic range, above 20 kHz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed. This technology, as well, can detect approaching objects and track their positions. [2]