Search results
Results from the WOW.Com Content Network
It is known that for any positive k, the number of n up to x with A(n) > n k is at least c(k)⋅x for a positive c(k) depending on k and x sufficiently large. In the opposite direction, for any function ψ(n) tending to infinity with n we have A(n) bounded above by n ψ(n) for almost all n. [9]
The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa. The other four elements of the multiplicative group modulo 15, namely 1, 4 (which satisfies 4 ≡ 2 2 ≡ 8 2 ≡ 7 2 ≡ 13 2 {\displaystyle 4\equiv 2^{2 ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Draw a horizontal line (the x-axis); mark an origin O. Draw a line from O at an angle above the horizontal line and a second line at an angle above that; the angle between the second line and the x-axis is +.
The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.
In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g.More precisely, given an open set in the complex plane and a function :, the antiderivative of is a function : that satisfies =.
In field theory, a simple extension is a field extension that is generated by the adjunction of a single element, called a primitive element. Simple extensions are well understood and can be completely classified. The primitive element theorem provides a characterization of the finite simple extensions.
The polynomial x 2 + 2x + 2, on the other hand, is primitive. Denote one of its roots by α. Then, because the natural numbers less than and relatively prime to 3 2 − 1 = 8 are 1, 3, 5, and 7, the four primitive roots in GF(3 2) are α, α 3 = 2α + 1, α 5 = 2α, and α 7 = α + 2. The primitive roots α and α 3 are algebraically