Search results
Results from the WOW.Com Content Network
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.
In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane.This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength.
Static stability is the ability of a robot to remain upright when at rest, or under acceleration and deceleration Static stability may also refer to: In aircraft or missiles: Static margin — a concept used to characterize the static stability and controllability of aircraft and missiles.
The stiffness does not only depend on the static stability term , it also contains a term which effectively determines the angle of attack due to the body rotation. The distance of the center of lift, including this term, ahead of the centre of gravity is called the maneuver margin. It must be negative for stability.
Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.
The dynamic pressure, along with the static pressure and the pressure due to elevation, is used in Bernoulli's principle as an energy balance on a closed system. The three terms are used to define the state of a closed system of an incompressible , constant-density fluid.
The dynamic compression ratio accounts for these factors. The dynamic compression ratio is higher with more conservative intake camshaft timing (i.e. soon after BDC), and lower with more radical intake camshaft timing (i.e. later after BDC). [12] Regardless, the dynamic compression ratio is always lower than the static compression ratio.