Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
where is the volume fraction of the fibers in the composite (and is the volume fraction of the matrix).. If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law = for some elastic modulus of the composite and some strain of the composite , then equations 1 and 2 can be combined to give
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
However, if the mass is displaced from the equilibrium position, the spring exerts a restoring elastic force that obeys Hooke's law. Mathematically, F = − k x , {\displaystyle \mathbf {F} =-k\mathbf {x} ,} where F is the restoring elastic force exerted by the spring (in SI units: N ), k is the spring constant ( N ·m −1 ), and x is the ...
For example, an invariant with respect to the group of proper orthogonal transformations, called SO(3), is a quantity that remains constant under arbitrary 3D rotations. C {\displaystyle \mathbf {C} } possesses two linear invariants and seven quadratic invariants with respect to SO(3). [ 12 ]
Another physical setting for derivation of the wave equation in one space dimension uses Hooke's law. In the theory of elasticity, Hooke's law is an approximation for certain materials, stating that the amount by which a material body is deformed (the strain) is linearly related to the force causing the deformation (the stress).
Wood is an example of an orthotropic material. Material properties in three perpendicular directions (axial, radial, and circumferential) are different. In material science and solid mechanics , orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational ...