Search results
Results from the WOW.Com Content Network
Given a homogeneous polynomial of degree with real coefficients that takes only positive values, one gets a positively homogeneous function of degree / by raising it to the power /. So for example, the following function is positively homogeneous of degree 1 but not homogeneous: ( x 2 + y 2 + z 2 ) 1 2 . {\displaystyle \left(x^{2}+y^{2}+z^{2 ...
A polynomial of degree 0 is always homogeneous; it is simply an element of the field or ring of the coefficients, usually called a constant or a scalar. A form of degree 1 is a linear form. [notes 2] A form of degree 2 is a quadratic form. In geometry, the Euclidean distance is the square root of a quadratic form.
A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...
Using homogeneous coordinates, a non-zero quadratic form in n variables defines an (n − 2)-dimensional quadric in the (n − 1)-dimensional projective space. This is a basic construction in projective geometry. In this way one may visualize 3-dimensional real quadratic forms as conic sections.
This restricts the possible terms in the discriminant. For the general quadratic polynomial, the discriminant is a homogeneous polynomial of degree 2 which has only two there are only two terms, while the general homogeneous polynomial of degree two in three variables has 6 terms. The discriminant of the general cubic polynomial is a ...
In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined. [c] For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5.
In other words, every homogeneous polynomial of degree d with more than d 2 variables has a non-trivial zero (so F p ((t)) is a C 2 field). Then one shows that if two Henselian valued fields have equivalent valuation groups and residue fields, and the residue fields have characteristic 0, then they are elementarily equivalent (which means that ...
When one changes the coordinates to put the singular point at the origin, the equation of the tangents at the singular point is thus the nonzero homogeneous part of the lowest degree of the polynomial, and the multiplicity of the singular point is the degree of this homogeneous part.