enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Histone-modifying enzymes - Wikipedia

    en.wikipedia.org/wiki/Histone-modifying_enzymes

    Histone-modifying enzymes are enzymes involved in the modification of histone substrates after protein translation and affect cellular processes including gene expression. [ 1 ] [ 2 ] To safely store the eukaryotic genome , DNA is wrapped around four core histone proteins (H3, H4, H2A, H2B), which then join to form nucleosomes .

  3. Chromatin remodeling - Wikipedia

    en.wikipedia.org/wiki/Chromatin_remodeling

    Cumulative evidence suggests that such code is written by specific enzymes which can (for example) methylate or acetylate DNA ('writers'), removed by other enzymes having demethylase or deacetylase activity ('erasers'), and finally readily identified by proteins ('readers') that are recruited to such histone modifications and bind via specific ...

  4. Restriction modification system - Wikipedia

    en.wikipedia.org/wiki/Restriction_modification...

    The restriction modification system (RM system) is found in bacteria and archaea, and provides a defense against foreign DNA, such as that borne by bacteriophages.. Bacteria have restriction enzymes, also called restriction endonucleases, which cleave double-stranded DNA at specific points into fragments, which are then degraded further by other endonucleases.

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    According to another study, when measured in a different solution, the DNA chain measured 22–26 Å (2.22.6 nm) wide, and one nucleotide unit measured 3.3 Å (0.33 nm) long. [10] The buoyant density of most DNA is 1.7g/cm 3. [11] DNA does not usually exist as a single strand, but instead as a pair of strands that are held tightly together.

  6. Histone methylation - Wikipedia

    en.wikipedia.org/wiki/Histone_methylation

    Front view of the human enzyme Histone Lysine N-Methyltransferase, H3 lysine-4 specific. The genome is tightly condensed into chromatin, which needs to be loosened for transcription to occur. In order to halt the transcription of a gene the DNA must be wound tighter. This can be done by modifying histones at certain sites by methylation.

  7. Restriction enzyme - Wikipedia

    en.wikipedia.org/wiki/Restriction_enzyme

    Type III enzymes (EC 3.1.21.5) cleave at sites a short distance from a recognition site; require ATP (but do not hydrolyse it); S-adenosyl-L-methionine stimulates the reaction but is not required; exist as part of a complex with a modification methylase (EC 2.1.1.72). Type IV enzymes target modified DNA, e.g. methylated, hydroxymethylated and ...

  8. Histone methyltransferase - Wikipedia

    en.wikipedia.org/wiki/Histone_methyltransferase

    Histone methylation is a principal epigenetic modification of chromatin [9] that determines gene expression, genomic stability, stem cell maturation, cell lineage development, genetic imprinting, DNA methylation, and cell mitosis. [2] Front view of the human enzyme Histone Lysine N-Methyltransferase, H3 lysine-4 specific.

  9. Post-translational modification - Wikipedia

    en.wikipedia.org/wiki/Post-translational...

    Phosphorylation is highly effective for controlling the enzyme activity and is the most common change after translation. [ 2 ] Many eukaryotic and prokaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation , which can promote protein folding and improve stability as well as serving regulatory functions.