Search results
Results from the WOW.Com Content Network
Galileo's hypothesis that inertial mass (resistance to acceleration) equals gravitational mass (weight) was extended by Albert Einstein to include special relativity and that combination became a key concept leading to the development of the modern theory of gravity, general relativity. Physical experiments following Galileo increased the ...
In 1900, Hendrik Lorentz tried to explain gravity on the basis of his ether theory and Maxwell's equations. He assumed, like Ottaviano Fabrizio Mossotti and Johann Karl Friedrich Zöllner, that the attraction of opposite charged particles is stronger than the repulsion of equal charged particles. The resulting net force is exactly what is known ...
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
During the Apollo 15 mission in 1971, astronaut David Scott showed that Galileo was right: acceleration is the same for all bodies subject to gravity on the Moon, even for a hammer and a feather. Three main forms of the equivalence principle are in current use: weak (Galilean), Einsteinian, and strong.
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei (/ ˌ ɡ æ l ɪ ˈ l eɪ oʊ ˌ ɡ æ l ɪ ˈ l eɪ /, US also / ˌ ɡ æ l ɪ ˈ l iː oʊ-/; Italian: [ɡaliˈlɛːo ɡaliˈlɛːi]) or mononymously as Galileo, was an Italian [a] astronomer, physicist and engineer, sometimes described as a polymath.
1583 – Galileo Galilei deduces the period relationship of a pendulum from observations (according to later biographer). 1586 – Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped. [2] 1589 – Galileo Galilei describes a hydrostatic balance for measuring specific gravity.
Galileo formulated these concepts in his description of uniform motion. [1] The topic was motivated by his description of the motion of a ball rolling down a ramp , by which he measured the numerical value for the acceleration of gravity near the surface of the Earth .
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.