Search results
Results from the WOW.Com Content Network
A process flow diagram (PFD) is a diagram commonly used in chemical and process engineering to indicate the general flow of plant processes and equipment. The PFD displays the relationship between major equipment of a plant facility and does not show minor details such as piping details and designations.
ISO 10628 Diagrams for the chemical and petrochemical industry specifies the classification, content, and representation of flow diagrams. It does not apply to electrical engineering diagrams. ISO 10628 consists of the following parts: Part 1: Specification of Diagrams (ISO 10628-1:2014) [1] Part 2: Graphical Symbols (ISO 10628-2:2012)
Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows: A diagram which shows the interconnection of process equipment and the instrumentation used to control the process.
An outline of key instrumentation is shown on Process Flow Diagrams (PFD) which indicate the principal equipment and the flow of fluids in the plant. Piping and Instrumentation Diagrams (P&ID) provide details of all the equipment (vessels, pumps, etc), piping and instrumentation on the plant in a symbolic and diagrammatic form.
Phase diagram (left) and process flow diagram (right) of an apparatus for the azeotropic distillation with "material separation agent". In this case the phase diagram includes a zone where components are not miscible, so following the condensation of the azeotrope, it is possible to separate the liquid components through decantation.
For example, if the feed is a saturated liquid, q = 1 and the slope of the q-line is infinite (drawn as a vertical line). As another example, if the feed is saturated vapor, q = 0 and the slope of the q-line is 0 (a horizontal line). [2] The typical McCabe–Thiele diagram in Figure 1 uses a q-line representing a partially vaporized feed.
Pipe recovery is the process by which the location of the stuck pipe is identified, and the free pipe is separated from the stuck pipe either by a backoff or a chemical cut. This allows fishing tools to subsequently be run down hole to latch onto and remove the stuck pipe.
Dye penetrant inspection (DP), also called liquid penetrate inspection (LPI) or penetrant testing (PT), is a widely applied and low-cost inspection method used to check surface-breaking defects in all non-porous materials (metals, plastics, or ceramics).