Search results
Results from the WOW.Com Content Network
A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually or spectroscopically by changes in absorption and/or emission properties. [1] Hence, a pH indicator is a chemical detector for hydronium ions (H 3 O +) or hydrogen ions (H +) in the ...
Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1. At pH ≤ pK a − 2 the substance is said to be fully protonated and at pH ≥ pK a + 2 it is fully dissociated (deprotonated).
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
Therefore, pH values on the different scales cannot be compared directly because of differences in the solvated proton ions, such as lyonium ions, which require an insolvent scale that involves the transfer activity coefficient of hydronium/lyonium ion. pH is an example of an acidity function, but others can be defined.
In chemistry, acid value (AV, acid number, neutralization number or acidity) is a number used to quantify the acidity of a given chemical substance.It is the quantity of base (usually potassium hydroxide (KOH)), expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.
Compound verbs, a highly visible feature of Hindi–Urdu grammar, consist of a verbal stem plus a light verb. The light verb (also called "subsidiary", "explicator verb", and "vector" [ 55 ] ) loses its own independent meaning and instead "lends a certain shade of meaning" [ 56 ] to the main or stem verb, which "comprises the lexical core of ...
The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]
The pH at the end-point depends mainly on the strength of the acid, pK a. The pH at the end-point is greater than 7 and increases with increasing concentration of the acid, T A, as seen in the figure. In a titration of a weak acid with a strong base the pH rises more steeply as the end-point is approached. At the end-point, the slope of the ...