enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The nullity of a matrix is the dimension of the null space, and is equal to the number of columns in the reduced row echelon form that do not have pivots. [7] The rank and nullity of a matrix A with n columns are related by the equation:

  3. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  4. Rank (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Rank_(graph_theory)

    Equivalently, the rank of a graph is the rank of the oriented incidence matrix associated with the graph. [2] Analogously, the nullity of the graph is the nullity of its oriented incidence matrix, given by the formula m − n + c, where n and c are as above and m is the number of edges in the graph. The nullity is equal to the first Betti ...

  5. Nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Nullity_theorem

    The nullity theorem is a mathematical theorem about the inverse of a partitioned matrix, which states that the nullity of a block in a matrix equals the nullity of the complementary block in its inverse matrix. Here, the nullity is the dimension of the kernel. The theorem was proven in an abstract setting by Gustafson (1984), and for matrices ...

  6. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of a graph in the mathematical subject of graph theory can mean either of two unrelated numbers. If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency

  7. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    The nullity theorem says that the nullity of A equals the nullity of the sub-block in the lower right of the inverse matrix, and that the nullity of B equals the nullity of the sub-block in the upper right of the inverse matrix. The inversion procedure that led to Equation performed matrix block operations that operated on C and D first.

  8. Zero matrix - Wikipedia

    en.wikipedia.org/wiki/Zero_matrix

    In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of m × n {\displaystyle m\times n} matrices, and is denoted by the symbol O {\displaystyle O} or 0 {\displaystyle 0} followed by subscripts corresponding to the ...

  9. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.