Search results
Results from the WOW.Com Content Network
Diffraction from a large three-dimensional periodic structure such as many thousands of atoms in a crystal is called Bragg diffraction. It is similar to what occurs when waves are scattered from a diffraction grating. Bragg diffraction is a consequence of interference between waves reflecting from many different crystal planes.
Caustics produced by a glass of water, visible as patches of light Nephroid caustic at the bottom of a teacup Caustics made by the surface of water Caustics in shallow water In optics , a caustic or caustic network [ 1 ] is the envelope of light rays which have been reflected or refracted by a curved surface or object, or the projection of that ...
In the accompanying animation, it can be seen that the wave itself (orange-brown) travels at a phase velocity much faster than the speed of the envelope (black), which corresponds to the group velocity. This pulse might be a communications signal, for instance, and its information only travels at the group velocity rate, even though it consists ...
Rather, the light that passed through the hole took on the shape of a cone. Later physicists used his work as evidence that light was a wave, significantly, Dutch mathematician Christiaan Huygens. He also discovered what are known as diffraction bands. [7] The crater Grimaldi on the Moon is named after him.
Solar diffraction ring. When light travels through thin clouds made up of nearly uniform sized water or aerosol droplets or ice crystals, diffraction or bending of light occurs as the light is diffracted by the edges of the particles. This degree of bending of light depends on the wavelength (color) of light and the size of the particles.
Photograph of a triangular prism, dispersing light Lamps as seen through a prism. In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components (the colors of the rainbow). Different wavelengths (colors) of light will be deflected by the prism at different angles. [1]
Diffraction of light through the eyelashes; Haidinger's brush; Monocular diplopia (or polyplopia) from reflections at boundaries between the various ocular media; Phosphenes from stimulation other than by light (e.g., mechanical, electrical) of the rod cells and cones of the eye or of other neurons of the visual system; Purkinje images.
Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).