Search results
Results from the WOW.Com Content Network
Oxygen gas is the second most common component of the Earth's atmosphere, taking up 20.8% of its volume and 23.1% of its mass (some 10 15 tonnes). [19] [70] [d] Earth is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O 2 by volume) and Venus have much less. The O
Usually atmospheric air supplies the oxygen for combustion, and limits assume the normal concentration of oxygen in air. Oxygen-enriched atmospheres enhance combustion, lowering the LFL and increasing the UFL, and vice versa; an atmosphere devoid of an oxidizer is neither flammable nor explosive for any fuel concentration (except for gases that ...
An Oxyliquit, also called liquid air explosive or liquid oxygen explosive, is an explosive material which is a mixture of liquid oxygen (LOX) with a suitable fuel, such as carbon (as lampblack), or an organic chemical (e.g. a mixture of soot and naphthalene), wood meal, or aluminium powder or sponge.
Triatomic oxygen (ozone, O 3) is a very reactive allotrope of oxygen that is a pale blue gas at standard temperature and pressure. Liquid and solid O 3 have a deeper blue color than ordinary O 2, and they are unstable and explosive. [5] [6] In its gas phase, ozone is destructive to materials like rubber and fabric and is damaging to lung tissue ...
Solid oxygen O 2, like liquid oxygen, is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum. Oxygen molecules have attracted attention because of the relationship between the molecular magnetization and crystal structures, electronic structures, and superconductivity. Oxygen is the ...
The original mass of flammable material and the mass of the oxygen consumed (typically from the surrounding air) equals the mass of the flame products (ash, water, carbon dioxide, and other gases). Lavoisier used the experimental fact that some metals gained mass when they burned to support his ideas (because those chemical reactions capture ...
Consider the first triangular diagram below, which shows all possible mixtures of methane, oxygen and nitrogen. Air is a mixture of about 21 volume percent oxygen, and 79 volume percent inerts (nitrogen). Any mixture of methane and air will therefore lie on the straight line between pure methane and pure air – this is shown as the blue air-line.
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).