enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.

  3. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).

  4. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

  5. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...

  6. Formal calculation - Wikipedia

    en.wikipedia.org/wiki/Formal_calculation

    More generally, formal power series can include series with any finite (or countable) number of variables, and with coefficients in an arbitrary ring. Rings of formal power series are complete local rings, which supports calculus-like methods in the purely algebraic framework of algebraic geometry and commutative algebra. They are analogous to ...

  7. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!

  9. Baker–Campbell–Hausdorff formula - Wikipedia

    en.wikipedia.org/wiki/Baker–Campbell...

    If and are matrices, one can compute := ⁡ using the power series for the exponential and logarithm, with convergence of the series if and are sufficiently small. It is natural to collect together all terms where the total degree in X {\displaystyle X} and Y {\displaystyle Y} equals a fixed number k {\displaystyle k} , giving an expression z k ...