Search results
Results from the WOW.Com Content Network
Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a weak acid. pK a values for strong acids have been estimated by theoretical means. [24] For example, the pK a value of aqueous HCl has been estimated as −9.3.
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
In chemistry, biochemistry, and pharmacology, a dissociation constant (K D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions.
The absorption rate constant K a is a value used in pharmacokinetics to describe the rate at which a drug enters into the system. It is expressed in units of time −1. [1] The K a is related to the absorption half-life (t 1/2a) per the following equation: K a = ln(2) / t 1/2a.
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
This conditional constant will vary with pH. It has a maximum at a certain pH. That is the pH where the ligand sequesters the metal most effectively. In biochemistry equilibrium constants are often measured at a pH fixed by means of a buffer solution. Such constants are, by definition, conditional and different values may be obtained when using ...
The KP equation was first written in 1970 by Soviet physicists Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993); it came as a natural generalization of the KdV equation (derived by Korteweg and De Vries in 1895). Whereas in the KdV equation waves are strictly one-dimensional, in the KP equation this restriction is ...
The binding constant, or affinity constant/association constant, is a special case of the equilibrium constant K, [1] and is the inverse of the dissociation constant. [2] It is associated with the binding and unbinding reaction of receptor (R) and ligand (L) molecules, which is formalized as: R + L ⇌ RL