Search results
Results from the WOW.Com Content Network
Synonyms for GCD include greatest common factor (GCF), highest common factor (HCF), highest common divisor (HCD), and greatest common measure (GCM). The greatest common divisor is often written as gcd(a, b) or, more simply, as (a, b), [3] although the latter notation is ambiguous, also used for concepts such as an ideal in the ring of integers ...
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
The arithmetic billiard for the numbers 15 and 40: the greatest common divisor is 5, the least common multiple is 120. In recreational mathematics, arithmetic billiards provide a geometrical method to determine the least common multiple (LCM) and the greatest common divisor (GCD) of two natural numbers. It makes use of reflections inside a ...
In mathematics, a GCD domain (sometimes called just domain) is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM). [1]
A simple and sufficient test for the absence of a dependence is the greatest common divisor (GCD) test. It is based on the observation that if a loop carried dependency exists between X[a*i + b] and X[c*i + d] (where X is the array; a, b, c and d are integers, and i is the loop variable), then GCD (c, a) must divide (d – b).
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
Then the matrix () having the greatest common divisor (,) as its entry is referred to as the GCD matrix on .The LCM matrix [] is defined analogously. [ 1 ] [ 2 ] The study of GCD type matrices originates from Smith (1875) who evaluated the determinant of certain GCD and LCM matrices.
Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.