enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus

  3. Metacentric height - Wikipedia

    en.wikipedia.org/wiki/Metacentric_height

    Initially the second moment of area increases as the surface area increases, increasing BM, so Mφ moves to the opposite side, thus increasing the stability arm. When the deck is flooded, the stability arm rapidly decreases. The centre of buoyancy is at the centre of mass of the volume of water that the hull displaces.

  4. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    The peak is "well-sampled", so that less than 10% of the area or volume under the peak (area if a 1D Gaussian, volume if a 2D Gaussian) lies outside the measurement region. The width of the peak is much larger than the distance between sample locations (i.e. the detector pixels must be at least 5 times smaller than the Gaussian FWHM).

  5. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.

  6. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    The two effects exactly cancel each other out. In the extreme case of the smallest possible sphere, the cylinder vanishes (its radius becomes zero) and the height equals the diameter of the sphere. In this case the volume of the band is the volume of the whole sphere, which matches the formula given above.

  7. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The formula for the volume of the ⁠ ⁠-ball can be derived from this by integration. Similarly the surface area element of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ -sphere of radius ⁠ r {\displaystyle r} ⁠ , which generalizes the area element of the ⁠ 2 {\displaystyle 2} ⁠ -sphere, is given by

  8. Square–cube law - Wikipedia

    en.wikipedia.org/wiki/Square–cube_law

    Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law.

  9. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The volume and area formulas were first determined in Archimedes's On the Sphere and Cylinder by the method of exhaustion. Zenodorus was the first to state that, for a given surface area, the sphere is the solid of maximum volume. [3]