Search results
Results from the WOW.Com Content Network
The average student grade can be obtained by averaging all the grades, without regard to classes (add all the grades up and divide by the total number of students): ¯ = = Or, this can be accomplished by weighting the class means by the number of students in each class.
The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), [11] is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric. [12]
The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures, the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal. However, it ...
The overall grade for the class is then typically weighted so that the final grade represents a stated proportion of different types of work. For example, daily homework may be counted as 50% of the final grade, chapter quizzes may count for 20%, the comprehensive final exam may count for 20%, [1] and a major project may count for the remaining ...
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.
The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]
The unbiased weighted estimator of the sample variance can be computed as follows: = = (=) = = (¯). Again, the corresponding standard deviation is the square root of the variance.