Search results
Results from the WOW.Com Content Network
For many practical problems, the detailed Bode plots can be approximated with straight-line segments that are asymptotes of the precise response. The effect of each of the terms of a multiple element transfer function can be approximated by a set of straight lines on a Bode plot. This allows a graphical solution of the overall frequency ...
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position.
The Warburg diffusion element is an equivalent electrical circuit component that models the diffusion process in dielectric spectroscopy. That element is named after German physicist Emil Warburg . A Warburg impedance element can be difficult to recognize because it is nearly always associated with a charge-transfer resistance (see charge ...
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
Bode was one of the great engineering philosophers of his era. [3] Long respected in academic circles worldwide, [4] [5] he is also widely known to modern engineering students mainly for developing the asymptotic magnitude and phase plot that bears his name, the Bode plot.
When a function such as a square wave is represented by a summation of terms, for example, a Fourier series or an expansion in orthogonal polynomials, the approximation of the function by a truncated number of terms in the series can exhibit overshoot, undershoot and ringing. The more terms retained in the series, the less pronounced the ...
As I understand the bode plot, is the transfer function as it is on the imaginary axis (s=jw). The question then is, why are poles or zeros on the real axis of the transfer function create corners and phase changes on the imaginary axis, at the same value of frequency as the pole or zero?