enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Equilibrium unfolding - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_unfolding

    In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.

  4. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Following Buchner's example, enzymes are usually named according to the reaction they carry out: the suffix -ase is combined with the name of the substrate (e.g., lactase is the enzyme that cleaves lactose) or to the type of reaction (e.g., DNA polymerase forms DNA polymers).

  5. Pepsin - Wikipedia

    en.wikipedia.org/wiki/Pepsin

    Pepsin is inactive at pH 6.5 and above, however pepsin is not fully denatured or irreversibly inactivated until pH 8.0. [ 11 ] [ 15 ] Therefore, pepsin in solutions of up to pH 8.0 can be reactivated upon re-acidification.

  6. Non-competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Non-competitive_inhibition

    In the presence of a non-competitive inhibitor, the apparent enzyme affinity is equivalent to the actual affinity. In terms of Michaelis-Menten kinetics, K m app = K m. This can be seen as a consequence of Le Chatelier's principle because the inhibitor binds to both the enzyme and the enzyme-substrate complex equally so that the equilibrium is ...

  7. Ribonuclease - Wikipedia

    en.wikipedia.org/wiki/Ribonuclease

    Ribonuclease (commonly abbreviated RNase) is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 (for the phosphorolytic enzymes) and 3.1 (for the hydrolytic enzymes) classes of enzymes.

  8. Taq polymerase - Wikipedia

    en.wikipedia.org/wiki/Taq_polymerase

    Following a similar line of thought, chimera proteins have been made by cherry-picking domains from E. coli, Taq, and T. neapolitana polymerase I. Swapping out the vestigial domain for a functional one from E. coli created a protein with proof-reading ability but a lower optimal temperature and low thermostability. [21]

  9. Enzyme inhibitor - Wikipedia

    en.wikipedia.org/wiki/Enzyme_inhibitor

    Non-competitive inhibition does not change K m (i.e., it does not affect substrate binding) but decreases V max (i.e., inhibitor binding hampers catalysis). [24]: 97 Mixed-type inhibitors bind to both E and ES, but their affinities for these two forms of the enzyme are different (K i ≠ K i ').