enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Following Buchner's example, enzymes are usually named according to the reaction they carry out: the suffix -ase is combined with the name of the substrate (e.g., lactase is the enzyme that cleaves lactose) or to the type of reaction (e.g., DNA polymerase forms DNA polymers).

  4. Cofactor (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Cofactor_(biochemistry)

    The term coenzyme refers specifically to enzymes and, as such, to the functional properties of a protein. On the other hand, "prosthetic group" emphasizes the nature of the binding of a cofactor to a protein (tight or covalent) and, thus, refers to a structural property.

  5. Alcohol dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Alcohol_dehydrogenase

    For example, young women are unable to process alcohol at the same rate as young men because they do not express the alcohol dehydrogenase as highly, although the inverse is true among the middle-aged. [37] The level of activity may not be dependent only on level of expression but also on allelic diversity among the population.

  6. Fatty acid desaturase - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_desaturase

    Cyanobacterial DesA, [19] an enzyme that can introduce a second cis double bond at the delta-12 position of fatty acid bound to membrane glycerolipids. This enzyme is involved in chilling tolerance; the phase transition temperature of lipids of cellular membranes being dependent on the degree of unsaturation of fatty acids of the membrane lipids.

  7. Phycocyanin - Wikipedia

    en.wikipedia.org/wiki/Phycocyanin

    Phycocyanin (αβ) monomer Phycocyanin (αβ) 6 hexamer. Phycocyanin shares a common structural theme with all phycobiliproteins. [4] The structure begins with the assembly of phycobiliprotein monomers, which are heterodimers composed of α and β subunits, and their respective chromophores linked via thioether bond.

  8. Triosephosphate isomerase - Wikipedia

    en.wikipedia.org/wiki/Triosephosphate_isomerase

    Triose phosphate isomerase is a highly efficient enzyme, performing the reaction billions of times faster than it would occur naturally in solution. The reaction is so efficient that it is said to be catalytically perfect: It is limited only by the rate the substrate can diffuse into and out of the enzyme's active site. [2] [3]

  9. Barnase - Wikipedia

    en.wikipedia.org/wiki/Barnase

    The two most important residues involved in catalysis are Glu73 and His102, which are both essential for enzymatic activity. Glu73 is the general base whilst His102 is the general acid. Although it is not directly involved in acid-base catalysis, Lys27 is also critical for activity; it has been implicated in transition-state substrate binding. [5]