enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Octet rule - Wikipedia

    en.wikipedia.org/wiki/Octet_rule

    To form five bonds, the one s, three p and one d orbitals combine to form five sp 3 d hybrid orbitals which each share an electron pair with a halogen atom, for a total of 10 shared electrons, two more than the octet rule predicts. Similarly to form six bonds, the six sp 3 d 2 hybrid orbitals form six bonds with 12 shared electrons. [18]

  3. Linnett double-quartet theory - Wikipedia

    en.wikipedia.org/wiki/Linnett_Double-Quartet_Theory

    “By allowing the two electrons independent ‘movement’ in a three-centre system, the three-centre bond allows the electrons a fairly considerable chance of being near one another”. Similarly, the resonance forms shown above also increase the degree of inter-electronic repulsions as the electrons are paired up in the boron-hydrogen bonds.

  4. Oxyanion - Wikipedia

    en.wikipedia.org/wiki/Oxyanion

    Oxyanions are formed by a large majority of the chemical elements. [1] The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H z A x O y. The structures of condensed oxyanions can be rationalized in terms of AO n polyhedral units with sharing of corners or edges between ...

  5. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  6. Valence electron - Wikipedia

    en.wikipedia.org/wiki/Valence_electron

    As a general rule, a main-group element (except hydrogen or helium) tends to react to form a s 2 p 6 electron configuration. This tendency is called the octet rule, because each bonded atom has 8 valence electrons including shared electrons. Similarly, a transition metal tends to react to form a d 10 s 2 p 6 electron configuration.

  7. Covalent bond - Wikipedia

    en.wikipedia.org/wiki/Covalent_bond

    Certain molecules such as xenon difluoride and sulfur hexafluoride have higher co-ordination numbers than would be possible due to strictly covalent bonding according to the octet rule. This is explained by the three-center four-electron bond ("3c–4e") model which interprets the molecular wavefunction in terms of non-bonding highest occupied ...

  8. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    The nitrogen atom has only 6 electrons assigned to it. One of the lone pairs on an oxygen atom must form a double bond, but either atom will work equally well. Therefore, there is a resonance structure. Tie up loose ends. Two Lewis structures must be drawn: Each structure has one of the two oxygen atoms double-bonded to the nitrogen atom.

  9. Hypervalent molecule - Wikipedia

    en.wikipedia.org/wiki/Hypervalent_molecule

    For example, in phosphorus pentafluoride (PF 5), 5 resonance structures can be generated each with four covalent bonds and one ionic bond with greater weight in the structures placing ionic character in the axial bonds, thus satisfying the octet rule and explaining both the observed trigonal bipyramidal molecular geometry and the fact that the ...