Search results
Results from the WOW.Com Content Network
The effect of altitude can be seen in Mexico City (9.776 m/s 2; altitude 2,240 metres (7,350 ft)), and by comparing Denver (9.798 m/s 2; 1,616 metres (5,302 ft)) with Washington, D.C. (9.801 m/s 2; 30 metres (98 ft)), both of which are near 39° N. Measured values can be obtained from Physical and Mathematical Tables by T.M. Yarwood and F ...
For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [ 2 ] [ 3 ] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2 ), [ 4 ] depending on altitude , latitude , and ...
The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).
The term "Kármán line" was invented by Andrew G. Haley in a 1959 paper, [20] based on the chart in von Kármán's 1956 paper, but Haley acknowledged that the 275,000 feet (52.08 mi; 83.82 km) limit was theoretical and would change as technology improved, as the minimum speed in von Kármán's calculations was based on the speed-to-weight ...
Non-zero coefficients C n m, S n m correspond to a lack of rotational symmetry around the polar axis for the mass distribution of Earth, i.e. to a "tri-axiality" of Earth. For large values of n the coefficients above (that are divided by r ( n + 1) in ( 9 )) take very large values when for example kilometers and seconds are used as units.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The oceans cover an area of 361.8 million km 2 (139.7 million sq mi) with a mean depth of 3,682 m (12,080 ft), resulting in an estimated volume of 1.332 billion km 3 (320 million cu mi). [ 193 ] If all of Earth's crustal surface were at the same elevation as a smooth sphere, the depth of the resulting world ocean would be 2.7 to 2.8 km (1.68 to ...