enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Extra-close oppositions of Mars happen every 15 to 17 years, when we pass between Mars and the Sun around the time of its perihelion (closest point to the Sun in orbit). The minimum distance between Earth and Mars has been declining over the years, and in 2003 the minimum distance was 55.76 million km, nearer than any such encounter in almost ...

  3. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    If the same sphere were made of lead the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period. When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density ρ (in kg/m 3), the above equation simplifies to (since M = Vρ = ⁠ 4 / 3 ⁠ π a 3 ρ)

  5. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    The Mars time of noon is 12:00 which is in Earth time 12 hours and 20 minutes after midnight. For the Mars Pathfinder, Mars Exploration Rover (MER), Phoenix, and Mars Science Laboratory missions, the operations teams have worked on "Mars time", with a work schedule synchronized to the local time at the landing site on Mars, rather than the ...

  6. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    The equation of time vanishes only for a planet with zero axial tilt and zero orbital eccentricity. [5] Two examples of planets with large equations of time are Mars and Uranus. On Mars the difference between sundial time and clock time can be as much as 50 minutes, due to the considerably greater eccentricity of its orbit.

  7. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    true anomaly at time t 1 = −7.577° true anomaly at time t 2 = 92.423° This y-value corresponds to Figure 3. With r 1 = 10000 km; r 2 = 16000 km; α = 260° one gets the same ellipse with the opposite direction of motion, i.e. true anomaly at time t 1 = 7.577° true anomaly at time t 2 = 267.577° = 360° − 92.423° and a transfer time of ...

  8. Today's Wordle Hint, Answer for #1256 on Tuesday, November 26 ...

    www.aol.com/lifestyle/todays-wordle-hint-answer...

    Today's Wordle Answer for #1256 on Tuesday, November 26, 2024. Today's Wordle answer on Tuesday, November 26, 2024, is WITCH. How'd you do? Next: Catch up on other Wordle answers from this week.

  9. Vicarious Hypothesis - Wikipedia

    en.wikipedia.org/wiki/Vicarious_Hypothesis

    [1] [2] [3] The hypothesis adopted the circular orbit and equant of Ptolemy's planetary model as well as the heliocentrism of the Copernican model. [4] [5] Calculations using the Vicarious Hypothesis did not support a circular orbit for Mars, leading Kepler to propose elliptical orbits as one of three laws of planetary motion in Astronomia Nova ...