enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct.

  3. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, . is also called the significance level, and is the probability of rejecting the null hypothesis given that it is true (a type I error). It is usually set at or below 5%.

  4. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted. Type II error: a guilty person may be not convicted.

  5. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    This is the most popular null hypothesis; It is so popular that many statements about significant testing assume such null hypotheses. Rejection of the null hypothesis is not necessarily the real goal of a significance tester. An adequate statistical model may be associated with a failure to reject the null; the model is adjusted until the null ...

  6. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    The p-value is the probability that a test statistic which is at least as extreme as the one obtained would occur under the null hypothesis. At a significance level of 0.05, a fair coin would be expected to (incorrectly) reject the null hypothesis (that it is fair) in 1 out of 20 tests on average.

  7. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    Despite the fact that the likelihood ratio in favor of the alternative hypothesis over the null is close to 100, if the hypothesis was implausible, with a prior probability of a real effect being 0.1, even the observation of p = 0.001 would have a false positive rate of 8 percent. It wouldn't even reach the 5 percent level.

  8. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    On the other hand, if the p value is greater than the chosen alpha level, then the null hypothesis (that the data came from a normally distributed population) can not be rejected (e.g., for an alpha level of .05, a data set with a p value of less than .05 rejects the null hypothesis that the data are from a normally distributed population ...

  9. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    The smaller the value of p, the greater the evidence for rejecting the null hypothesis; so here the evidence is strong that men and women are not equally likely to be studiers. For a two-tailed test we must also consider tables that are equally extreme, but in the opposite direction. Unfortunately, classification of the tables according to ...