enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    Here might be the simplicial homology, or more generally the singular homology. The usual proof of this result is a pure piece of homological algebra about chain complexes of free abelian groups . The form of the result is that other coefficients A may be used, at the cost of using a Tor functor .

  4. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. [2] CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. [2]

  5. Group cohomology - Wikipedia

    en.wikipedia.org/wiki/Group_cohomology

    Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology.

  6. Alexander duality - Wikipedia

    en.wikipedia.org/wiki/Alexander_duality

    This does work out, predicting the complement's reduced Betti numbers. The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers 1, 1, 0. of the circle, and therefore 0, 1, 1. by flipping over and 1, 1, 0. by ...

  7. Eilenberg–Steenrod axioms - Wikipedia

    en.wikipedia.org/wiki/Eilenberg–Steenrod_axioms

    A "homology-like" theory satisfying all of the Eilenberg–Steenrod axioms except the dimension axiom is called an extraordinary homology theory (dually, extraordinary cohomology theory). Important examples of these were found in the 1950s, such as topological K-theory and cobordism theory , which are extraordinary co homology theories, and ...

  8. Whitehead torsion - Wikipedia

    en.wikipedia.org/wiki/Whitehead_torsion

    The Whitehead group of a connected CW-complex or a manifold M is equal to the Whitehead group ⁡ (()) of the fundamental group of M.. If G is a group, the Whitehead group ⁡ is defined to be the cokernel of the map {} ([]) which sends (g, ±1) to the invertible (1,1)-matrix (±g).

  9. Mayer–Vietoris sequence - Wikipedia

    en.wikipedia.org/wiki/Mayer–Vietoris_sequence

    Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]