Search results
Results from the WOW.Com Content Network
For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...
Here might be the simplicial homology, or more generally the singular homology. The usual proof of this result is a pure piece of homological algebra about chain complexes of free abelian groups . The form of the result is that other coefficients A may be used, at the cost of using a Tor functor .
It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. [2] CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. [2]
Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology.
This does work out, predicting the complement's reduced Betti numbers. The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers 1, 1, 0. of the circle, and therefore 0, 1, 1. by flipping over and 1, 1, 0. by ...
A "homology-like" theory satisfying all of the Eilenberg–Steenrod axioms except the dimension axiom is called an extraordinary homology theory (dually, extraordinary cohomology theory). Important examples of these were found in the 1950s, such as topological K-theory and cobordism theory , which are extraordinary co homology theories, and ...
The Whitehead group of a connected CW-complex or a manifold M is equal to the Whitehead group (()) of the fundamental group of M.. If G is a group, the Whitehead group is defined to be the cokernel of the map {} ([]) which sends (g, ±1) to the invertible (1,1)-matrix (±g).
Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]