enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = ⁠ 1 / 6 ⁠, B 4 = ⁠− + 1 / 30 ⁠, and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]

  3. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    This series was used as a representation of two of Zeno's paradoxes. [2] For example, in the paradox of Achilles and the Tortoise, the warrior Achilles was to race against a tortoise. The track is 100 meters long. Achilles could run at 10 m/s, while the tortoise only 5. The tortoise, with a 10-meter advantage, Zeno argued, would win.

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Ternary: The base-three numeral system with 0, 1, and 2 as digits. Quaternary: The base-four numeral system with 0, 1, 2, and 3 as digits. Hexadecimal: Base 16, widely used by computer system designers and programmers, as it provides a more human-friendly representation of binary-coded values.

  5. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    [0; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, …] [OEIS 100] Computed up to 1 011 597 392 terms by E. Weisstein. He also noted that while the Champernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland–Erdős Constant do not exhibit this property. [Mw 85]

  6. 1 − 2 + 3 − 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_3_%E2%88...

    The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1.

  7. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.

  8. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    In base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×10 2 + 0×10 1 + 4×10 0. Zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip ...

  9. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    [2] [3] Historically, the concept of a proof and its associated mathematical rigour first appeared in Greek mathematics , most notably in Euclid 's Elements . [ 4 ] Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions ), until the 16th and 17th centuries, when ...