enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  3. Heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Heat_exchanger

    Spiral Flow/Cross Flow: One fluid is in spiral flow and the other in a cross flow. Spiral flow passages are welded at each side for this type of spiral heat exchanger. This type of flow is suitable for handling low density gas, which passes through the cross flow, avoiding pressure loss.

  4. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    In a cross-flow, in which one system, usually the heat sink, has the same nominal temperature at all points on the heat transfer surface, a similar relation between exchanged heat and LMTD holds, but with a correction factor. A correction factor is also required for other more complex geometries, such as a shell and tube exchanger with baffles.

  5. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid. When the ...

  6. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    One common example of a heat exchanger is a car's radiator, in which the hot coolant fluid is cooled by the flow of air over the radiator's surface. [34] [35] Common types of heat exchanger flows include parallel flow, counter flow, and cross flow.

  7. Countercurrent exchange - Wikipedia

    en.wikipedia.org/wiki/Countercurrent_exchange

    Cocurrent and countercurrent heat exchange. A cocurrent heat exchanger is an example of a cocurrent flow exchange mechanism. Two tubes have a liquid flowing in the same direction. One starts off hot at 60 °C (140 °F), the second cold at 20 °C (68 °F). A thermoconductive membrane or an open section allows heat transfer between the two flows.

  8. Shell-and-tube heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Shell-and-tube_heat_exchanger

    Fluid flow simulation for a shell-and-tube style exchanger; The shell inlet is at the top rear and outlet in the foreground at the bottom Shell and tube heat exchanger. A shell-and-tube heat exchanger is a class of heat exchanger designs. [1] [2] It is the most common type of heat exchanger in oil refineries and other large chemical processes ...

  9. Thermal contact conductance - Wikipedia

    en.wikipedia.org/wiki/Thermal_contact_conductance

    where is the heat flow, is the thermal conductivity, is the cross sectional area and / is the temperature gradient in the direction of flow. From considerations of conservation of energy, the heat flow between the two bodies in contact, bodies A and B, is found as: