Search results
Results from the WOW.Com Content Network
Tris(bipyridine)ruthenium(II) chloride is the chloride salt coordination complex with the formula [Ru(bpy) 3]Cl 2.This polypyridine complex is a red crystalline salt obtained as the hexahydrate, although all of the properties of interest are in the cation [Ru(bpy) 3] 2+, which has received much attention because of its distinctive optical properties.
In the "tris(bipy) complexes" three bipyridine molecules coordinate to a metal ion, written as [M(bipy) 3] n+ (M = metal ion; Cr, Fe, Co, Ru, Rh and so on). These complexes have six-coordinated, octahedral structures and exists as enantiomeric pairs: These and other homoleptic tris-2,2′-bipy complexes of many transition metals are
For the common photosensitizer, tris-(2,2’-bipyridyl)ruthenium (abbreviated as [Ru(bipy) 3] 2+ or [Ru(bpy) 3] 2+), the lifetime of the triplet excited state is approximately 1100 ns. This lifetime is sufficient for other relaxation pathways (specifically, electron-transfer pathways) to occur before decay of the catalyst to its ground state.
This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.
2,2′-Bipyridine (bipy or bpy, pronounced / ˈ b ɪ p iː /) is an organic compound with the formula (C 5 H 4 N) 2. This colorless solid is an important isomer of the bipyridine family. It is a bidentate chelating ligand, forming complexes with many transition metals. Ruthenium and platinum complexes of bipy exhibit intense luminescence. [1]
Orgel diagrams will, however, show the number of spin allowed transitions, along with their respective symmetry designations. In an Orgel diagram, the parent term (P, D, or F) in the presence of no ligand field is located in the center of the diagram, with the terms due to that electronic configuration in a ligand field at each side.
In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6 , meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six ...
Configurations of elements 109 and above are not available. Predictions from reliable sources have been used for these elements. Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2