Search results
Results from the WOW.Com Content Network
An XOR linked list is a type of data structure used in computer programming. It takes advantage of the bitwise XOR operation to decrease storage requirements for doubly linked lists by storing the composition of both addresses in one field. While the composed address is not meaningful on its own, during traversal it can be combined with ...
XOR can be used to swap two numeric variables in computers, using the XOR swap algorithm; however this is regarded as more of a curiosity and not encouraged in practice. XOR linked lists leverage XOR properties in order to save space to represent doubly linked list data structures.
Bitwise XOR of 4-bit integers. A bitwise XOR is a binary operation that takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of corresponding bits. The result in each position is 1 if only one of the bits is 1, but will be 0 if both are 0 or both are 1.
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
The rightmost bit of the LFSR is called the output bit, which is always also a tap. To obtain the next state, the tap bits are XOR-ed sequentially; then, all bits are shifted one place to the right, with the rightmost bit being discarded, and that result of XOR-ing the tap bits is fed back into the now-vacant leftmost bit.
A linked list is a sequence of nodes that contain two fields: data (an integer value here as an example) and a link to the next node. The last node is linked to a terminator used to signify the end of the list. In computer science, a linked list is a
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or ( ↮ {\displaystyle \nleftrightarrow } ) from mathematical logic ; that is, a true output results if one, and only one, of the inputs to the ...
Therefore inversion of the values of bits is done by XORing them with a 1. If the original bit was 1, it returns 1 XOR 1 = 0. If the original bit was 0 it returns 0 XOR 1 = 1. Also note that XOR masking is bit-safe, meaning that it will not affect unmasked bits because Y XOR 0 = Y, just like an OR. Example: Toggling bit values