enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix is said to have full rank if its rank equals the largest possible for a matrix of the same dimensions, which is the lesser of the number of rows and columns. A matrix is said to be rank-deficient if it does not have full rank. The rank deficiency of a matrix is the difference between the lesser of the number of rows and columns, and ...

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space. The dimension of the null space is called the nullity of the matrix, and is related to the rank by the following equation:

  5. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    In the case where V is finite-dimensional, this implies the rank–nullity theorem: ⁡ (⁡) + ⁡ (⁡) = ⁡ (). where the term rank refers to the dimension of the image of L, ⁡ (⁡), while nullity refers to the dimension of the kernel of L, ⁡ (⁡). [4] That is, ⁡ = ⁡ (⁡) ⁡ = ⁡ (⁡), so that the rank–nullity theorem can be ...

  6. Dimension theorem for vector spaces - Wikipedia

    en.wikipedia.org/wiki/Dimension_theorem_for...

    In mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite or infinite (in the latter case, it is a cardinal number), and defines the dimension of the vector space. Formally, the dimension theorem for vector spaces states that:

  7. Dimension (vector space) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(vector_space)

    A diagram of dimensions 1, 2, 3, and 4. In mathematics, the dimension of a vector space V is the cardinality (i.e., the number of vectors) of a basis of V over its base field. [1] [2] It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension.

  8. Circuit rank - Wikipedia

    en.wikipedia.org/wiki/Circuit_rank

    The circuit rank of a hypergraph can be derived by its Levi graph, with the same circuit rank but reduced to a simple graph. = + (+) where g is the degree sum, e is the number of edges in the given graph, v is the number of vertices, and c is the number of connected components.

  9. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of M is given by m − n + c, where, c is the number of components of the graph and n − c is the rank of the oriented incidence matrix. This name is rarely used; the number is more commonly known as the cycle rank, cyclomatic number, or circuit rank of the graph. It is equal to the rank of the cographic matroid of the graph.