Search results
Results from the WOW.Com Content Network
In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. [1] An easy example may be a position such as (5, 2, 1) in a 3-dimensional Cartesian coordinate system with the basis as the axes of this system.
Then, the coordinates of a vector form a sequence similarly indexed, and a vector is completely characterized by the sequence of coordinates. An ordered basis, especially when used in conjunction with an origin, is also called a coordinate frame or simply a frame (for example, a Cartesian frame or an affine frame).
If two different bases are considered, the coordinate vector that represents a vector v on one basis is, in general, different from the coordinate vector that represents v on the other basis. A change of basis consists of converting every assertion expressed in terms of coordinates relative to one basis into an assertion expressed in terms of ...
tangent basis e 1, e 2, e 3 to the coordinate curves (left), dual basis, covector basis, or reciprocal basis e 1, e 2, e 3 to coordinate surfaces (right), in 3-d general curvilinear coordinates (q 1, q 2, q 3), a tuple of numbers to define a point in a position space. Note the basis and cobasis coincide only when the basis is orthonormal. [1 ...
Every vector a in three dimensions is a linear combination of the standard basis vectors i, j and k.. In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. [1]
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:
the coordinate scalar-multiplying the corresponding basis vector, in which case the "y-component" of a is a y e y (a vector), and similarly for x and z. A more general notation is tensor index notation , which has the flexibility of numerical values rather than fixed coordinate labels.
The local (non-unit) basis vector is b 1 (notated h 1 above, with b reserved for unit vectors) and it is built on the q 1 axis which is a tangent to that coordinate line at the point P. The axis q 1 and thus the vector b 1 form an angle with the Cartesian x axis and the Cartesian basis vector e 1. It can be seen from triangle PAB that