enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    The operator is said to be positive-definite, and written >, if , >, for all ⁡ {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.

  3. List of things named after Charles Hermite - Wikipedia

    en.wikipedia.org/wiki/List_of_things_named_after...

    Hermitian form, a specific sesquilinear form; Hermitian function, a complex function whose complex conjugate is equal to the original function with the variable changed in sign; Hermitian manifold/structure Hermitian metric, is a smoothly varying positive-definite Hermitian form on each fiber of a complex vector bundle

  4. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).

  5. Loewner order - Wikipedia

    en.wikipedia.org/wiki/Loewner_order

    Let A and B be two Hermitian matrices of order n. We say that A ≥ B if A − B is positive semi-definite. Similarly, we say that A > B if A − B is positive definite. Although it is commonly discussed on matrices (as a finite-dimensional case), the Loewner order is also well-defined on operators (an infinite-dimensional case) in the ...

  6. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    A further property of a Hermitian operator is that eigenfunctions corresponding to different eigenvalues are orthogonal. [1] In matrix form, operators allow real eigenvalues to be found, corresponding to measurements. Orthogonality allows a suitable basis set of vectors to represent the state of the quantum system.

  7. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

  8. Charles Hermite - Wikipedia

    en.wikipedia.org/wiki/Charles_Hermite

    Hermite polynomials, Hermite interpolation, Hermite normal form, Hermitian operators, and cubic Hermite splines are named in his honor. One of his students was Henri Poincaré . He was the first to prove that e , the base of natural logarithms , is a transcendental number .

  9. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.

  1. Related searches positive operator is hermitian or odd list of characters named harry and david

    positive operator wikipediawhat is a positive operator