enow.com Web Search

  1. Ad

    related to: similar matrix calculator

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    This means that one may use Jordan forms that only exist over a larger field to determine whether the given matrices are similar. In the definition of similarity, if the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar; if P can be chosen to be a unitary matrix then A and B are unitarily equivalent.

  3. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

  4. Matrix consimilarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_consimilarity

    So for real matrices similar by some real matrix , consimilarity is the same as matrix similarity. Like ordinary similarity, consimilarity is an equivalence relation on the set of n × n {\displaystyle n\times n} matrices, and it is reasonable to ask what properties it preserves.

  5. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.

  6. Matrix congruence - Wikipedia

    en.wikipedia.org/wiki/Matrix_congruence

    Matrix congruence is an equivalence relation. Matrix congruence arises when considering the effect of change of basis on the Gram matrix attached to a bilinear form or quadratic form on a finite-dimensional vector space: two matrices are congruent if and only if they represent the same bilinear form with respect to different bases.

  7. Matrix equivalence - Wikipedia

    en.wikipedia.org/wiki/Matrix_equivalence

    In linear algebra, two rectangular m-by-n matrices A and B are called equivalent if = for some invertible n-by-n matrix P and some invertible m-by-m matrix Q.Equivalent matrices represent the same linear transformation V → W under two different choices of a pair of bases of V and W, with P and Q being the change of basis matrices in V and W respectively.

  8. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    Thus, an matrix of complex numbers could be well represented by a matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an n × m {\displaystyle n\times m} matrix made up of complex numbers.

  9. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Not every square matrix is similar to a companion matrix, but every square matrix is similar to a block diagonal matrix made of companion matrices. If we also demand that the polynomial of each diagonal block divides the next one, they are uniquely determined by A, and this gives the rational canonical form of A.

  1. Ad

    related to: similar matrix calculator