Search results
Results from the WOW.Com Content Network
Meta-analysis increases the power of statistical analyses by pooling the results of all available trials. As one tries to use meta-analysis to estimate a combined effect from a group of similar studies, the effects found in the individual studies need to be similar enough that one can be confident that a combined estimate will be a meaningful ...
They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part. In meta-analysis, which combines the data from several studies, homogeneity measures the differences or similarities between the several studies (see also Study heterogeneity).
Funnel plots, introduced by Light and Pillemer in 1984 [1] and discussed in detail by Matthias Egger and colleagues, [2] [3] are useful adjuncts to meta-analyses. A funnel plot is a scatterplot of treatment effect against a measure of study precision. It is used primarily as a visual aid for detecting bias or systematic heterogeneity.
Meta-analysis leads to a shift of emphasis from single studies to multiple studies. It emphasizes the practical importance of the effect size instead of the statistical significance of individual studies. This shift in thinking has been termed "meta-analytic thinking". The results of a meta-analysis are often shown in a forest plot.
The PRISMA flow diagram, depicting the flow of information through the different phases of a systematic review. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) is an evidence-based minimum set of items aimed at helping scientific authors to report a wide array of systematic reviews and meta-analyses, primarily used to assess the benefits and harms of a health care ...
For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0.05. In statistics, Fisher's method, [1] [2] also known as Fisher's combined probability test, is a technique for data fusion or "meta-analysis" (analysis of analyses).
A forest plot, also known as a blobbogram, is a graphical display of estimated results from a number of scientific studies addressing the same question, along with the overall results. [1] It was developed for use in medical research as a means of graphically representing a meta-analysis of the results of randomized controlled trials.
The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homos k edasticity and heteros k edasticity are also frequently used. “Skedasticity” comes from the Ancient Greek word “skedánnymi”, meaning “to scatter”.