Search results
Results from the WOW.Com Content Network
An equivalent impedance is an equivalent circuit of an electrical network of impedance elements [note 2] which presents the same impedance between all pairs of terminals [note 10] as did the given network.
The Thévenin-equivalent resistance R Th is the resistance measured across points A and B "looking back" into the circuit. The resistance is measured after replacing all voltage- and current-sources with their internal resistances. That means an ideal voltage source is replaced with a short circuit, and an ideal current source is replaced with ...
Norton equivalent – Any linear two-terminal circuit can be replaced by a current source and a parallel impedance. However, the single impedance can be of arbitrary complexity (as a function of frequency) and may be irreducible to a simpler form.
Miller theorem helps reduce the complexity in some circuits particularly with feedback [2] by converting them to simpler equivalent circuits. But Miller theorem is not only an effective tool for creating equivalent circuits; it is also a powerful tool for designing and understanding circuits based on modifying impedance by additional voltage ...
The Norton equivalent circuit is used to represent any network of linear sources and impedances at a given frequency. Norton's theorem and its dual, Thévenin's theorem, are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The equivalent circuit for Z-parameters of a two-port network. The equivalent circuit for Z-parameters of a reciprocal two-port network. The Z-parameter matrix for the two-port network is probably the most common. In this case the relationship between the port currents, port voltages and the Z-parameter matrix is given by:
In electronics, a constant phase element is an equivalent electrical circuit component that models the behaviour of a double layer, that is, an imperfect capacitor (see double-layer capacitance). Constant phase elements are also used in equivalent circuit modeling and data fitting of electrochemical impedance spectroscopy data.