enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic optimization - Wikipedia

    en.wikipedia.org/wiki/Stochastic_optimization

    Stochastic optimization (SO) are optimization methods that generate and use random variables. For stochastic optimization problems, the objective functions or constraints are random. Stochastic optimization also include methods with random iterates .

  3. Stochastic programming - Wikipedia

    en.wikipedia.org/wiki/Stochastic_programming

    A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. [1] [2] This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both ...

  4. Simultaneous perturbation stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Simultaneous_perturbation...

    Simultaneous perturbation stochastic approximation (SPSA) is an algorithmic method for optimizing systems with multiple unknown parameters. It is a type of stochastic approximation algorithm. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, simulation optimization, and atmospheric modeling.

  5. Stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_approximation

    Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...

  6. Estimation of distribution algorithm - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_distribution...

    Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), [1] are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates ...

  7. Benders decomposition - Wikipedia

    en.wikipedia.org/wiki/Benders_decomposition

    This block structure often occurs in applications such as stochastic programming as the uncertainty is usually represented with scenarios. The technique is named after Jacques F. Benders. The strategy behind Benders decomposition can be summarized as divide-and-conquer. That is, in Benders decomposition, the variables of the original problem ...

  8. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    is the optimization variable. ‖ x ‖ 2 {\displaystyle \lVert x\rVert _{2}} is the Euclidean norm and T {\displaystyle ^{T}} indicates transpose . [ 1 ] The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function ( A x + b , c T x + d ) {\displaystyle (Ax+b,c^{T}x+d)} to lie in the second ...

  9. Simulated annealing - Wikipedia

    en.wikipedia.org/wiki/Simulated_annealing

    Stochastic optimization is an umbrella set of methods that includes simulated annealing and numerous other approaches. Particle swarm optimization is an algorithm modeled on swarm intelligence that finds a solution to an optimization problem in a search space, or models and predicts social behavior in the presence of objectives.