Search results
Results from the WOW.Com Content Network
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
TLC: Total lung capacity: the volume in the lungs at maximal inflation, the sum of VC and RV. TV: Tidal volume: that volume of air moved into or out of the lungs in 1 breath (TV indicates a subdivision of the lung; when tidal volume is precisely measured, as in gas exchange calculation, the symbol TV or V T is used.)
In obstructive lung disease, the FEV1 is reduced due to an obstruction of air escaping from the lungs. Thus, the FEV1/FVC ratio will be reduced. [4] More specifically, according to the National Institute for Clinical Excellence, the diagnosis of COPD is made when the FEV 1 /FVC ratio is less than 0.7 or [8] the FEV 1 is less than 75% of predicted; [9] however, other authoritative bodies have ...
Minute ventilation (or respiratory minute volume or minute volume) is the volume of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute. It is an important parameter in respiratory medicine due to its relationship with blood carbon dioxide levels. It can be measured with devices such as a ...
Output of a spirometer. Vital capacity (VC) is the maximum amount of air a person can expel from the lungs after a maximum inhalation.It is equal to the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume.
In those with acute respiratory failure on mechanical ventilation, "the static compliance of the total respiratory system is conventionally obtained by dividing the tidal volume by the difference between the 'plateau' pressure measured at the airway opening (PaO) during an occlusion at end-inspiration and positive end-expiratory pressure (PEEP ...
Applying this analogy to different causes of hypoxemia should help reason out whether to expect an elevated or normal A-a gradient. As a general rule of thumb, any pathology of the alveolar-capillary unit will result in a high A-a gradient. The table below has the different disease states that cause hypoxemia. [2]
In respiratory physiology, the ventilation/perfusion ratio (V/Q ratio) is a ratio used to assess the efficiency and adequacy of the ventilation-perfusion coupling and thus the matching of two variables: V – ventilation – the air that reaches the alveoli; Q – perfusion – the blood that reaches the alveoli via the capillaries