enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's ternary quadratic form - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_ternary...

    In number theory, a branch of mathematics, Ramanujan's ternary quadratic form is the algebraic expression x 2 + y 2 + 10z 2 with integral values for x, y and z. [1] [2] Srinivasa Ramanujan considered this expression in a footnote in a paper [3] published in 1916 and briefly discussed the representability of integers in this form.

  3. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x1. Or x and y can both be treated as unknowns, and then there are many solutions to the equation; a symbolic solution is (x, y) = (a + 1, a), where the variable a may take any value. Instantiating a symbolic solution with specific numbers ...

  4. Equation xy = yx - Wikipedia

    en.wikipedia.org/wiki/Equation_xy_=_yx

    "x^y = y^x - commuting powers". Arithmetical and Analytical Puzzles. Torsten Sillke. Archived from the original on 2015-12-28. dborkovitz (2012-01-29). "Parametric Graph of x^y=y^x". GeoGebra. OEIS sequence A073084 (Decimal expansion of −x, where x is the negative solution to the equation 2^x = x^2)

  5. Milstein method - Wikipedia

    en.wikipedia.org/wiki/Milstein_method

    Consider the autonomous Itō stochastic differential equation: = + with initial condition =, where denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [,]. Then the Milstein approximation to the true solution X {\displaystyle X} is the Markov chain Y {\displaystyle Y} defined as follows:

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    [17] [18] For example, the fraction 1/(x 2 + 1) is not a polynomial, and it cannot be written as a finite sum of powers of the variable x. For polynomials in one variable, there is a notion of Euclidean division of polynomials, generalizing the Euclidean division of integers.

  7. Binary quadratic form - Wikipedia

    en.wikipedia.org/wiki/Binary_quadratic_form

    Another ancient problem involving quadratic forms asks us to solve Pell's equation. For instance, we may seek integers x and y so that 1 = x 22 y 2 {\displaystyle 1=x^{2}-2y^{2}} . Changing signs of x and y in a solution gives another solution, so it is enough to seek just solutions in positive integers.

  8. Abel equation of the first kind - Wikipedia

    en.wikipedia.org/wiki/Abel_equation_of_the_first...

    Dimitrios E. Panayotounakos and Theodoros I. Zarmpoutis discovered an analytic method to solve the ... 28: 1– 16. doi:10.1023 ... This page was last edited on 2 ...

  9. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.).