Search results
Results from the WOW.Com Content Network
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
The construction as to how Archimedes trisected the angle is as follows: Suppose the angle ABC is to be trisected. Trisect the segment BC and find BD to be one third of BC. Draw a circle with center B and radius BD. Suppose the circle with center B intersects the spiral at point E. Angle ABE is one third angle ABC. [3]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The Archimedean spiral is shown in red, and corresponds to the values 0 ≤ θ ≤ 8π of the angle parameter, while the Involute of the circle is shown in black, and corresponds to the values 0 ≤ θ ≤ 17π/2 of the angle parameter. The x-axis extends from -25 to +28 and the y-axis from -26.4 to +23.4, and there are tick marks at -20, -10 ...
Archimedes of Syracuse [a] (/ ˌ ɑːr k ɪ ˈ m iː d iː z / AR-kim-EE-deez; [2] c. 287 – c. 212 BC) was an Ancient Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. [3] Although few details of his life are known, he is considered one of the leading scientists in classical antiquity.
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
[2]: p. 30 In the fifth century BCE, Hippias used a curve that he called a quadratrix to both trisect the general angle and square the circle, and Nicomedes in the second century BCE showed how to use a conchoid to trisect an arbitrary angle; [2]: p. 37 but these methods also cannot be followed with just straightedge and compass.