enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black hole thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Black_hole_thermodynamics

    In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...

  3. Bekenstein bound - Wikipedia

    en.wikipedia.org/wiki/Bekenstein_bound

    According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...

  4. Ruppeiner geometry - Wikipedia

    en.wikipedia.org/wiki/Ruppeiner_geometry

    This geometry has been applied to black hole thermodynamics, with some physically relevant results.The most physically significant case is for the Kerr black hole in higher dimensions, where the curvature singularity signals thermodynamic instability, as found earlier by conventional methods.

  5. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    (Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [17] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...

  6. Hawking radiation - Wikipedia

    en.wikipedia.org/wiki/Hawking_radiation

    Black hole evaporation has several significant consequences: Black hole evaporation produces a more consistent view of black hole thermodynamics by showing how black holes interact thermally with the rest of the universe. Unlike most objects, a black hole's temperature increases as it radiates away mass.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    [3]: 66n, 541 (This is a trivial conclusion, since the emissivity, , is defined to be the quantity that makes this equation valid. What is non-trivial is the proposition that ε ≤ 1 {\displaystyle \varepsilon \leq 1} , which is a consequence of Kirchhoff's law of thermal radiation .

  8. Ryu–Takayanagi conjecture - Wikipedia

    en.wikipedia.org/wiki/Ryu–Takayanagi_conjecture

    The thermodynamics of black holes suggests certain relationships between the entropy of black holes and their geometry. Specifically, the Bekenstein–Hawking area formula conjectures that the entropy of a black hole is proportional to its surface area:

  9. Unruh effect - Wikipedia

    en.wikipedia.org/wiki/Unruh_effect

    The Unruh temperature has the same form as the Hawking temperature T H = ⁠ ħg / 2πck B ⁠ with g denoting the surface gravity of a black hole, which was derived by Stephen Hawking in 1974. [7] In the light of the equivalence principle , it is, therefore, sometimes called the Hawking–Unruh temperature.