enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Terminal velocity depends on atmospheric drag, the coefficient of drag for the object, the (instantaneous) velocity of the object, and the area presented to the airflow. Apart from the last formula, these formulas also assume that g negligibly varies with height during the fall (that is, they assume constant acceleration).

  3. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Based on air resistance, for example, the terminal speed of a skydiver in a belly-to-earth (i.e., face down) free fall position is about 55 m/s (180 ft/s). [3] This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached. In this example ...

  4. Cant (road and rail) - Wikipedia

    en.wikipedia.org/wiki/Cant_(road_and_rail)

    where is the superelevation in inches, is the curvature of the track in degrees per 100 feet, and the maximum speed in miles per hour. The maximum value of cant (the height of the outer rail above the inner rail) for a standard gauge railway is approximately 150 mm (6 in).

  5. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    In the simplest case the speed, mass, and radius are constant. Consider a body of one kilogram, moving in a circle of radius one metre, with an angular velocity of one radian per second. The speed is 1 metre per second. The inward acceleration is 1 metre per square second, v 2 /r.

  6. Range (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Range_(aeronautics)

    A physical interpretation is a height that a quantity of fuel could lift itself in the Earth's gravity field (assumed constant) by converting its chemical energy into potential energy. for kerosene jet fuel is 2,376 nautical miles (4,400 km) or about 69% of the Earth's radius.

  7. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  8. Minimum railway curve radius - Wikipedia

    en.wikipedia.org/wiki/Minimum_railway_curve_radius

    The relationship between speed and tilt can be calculated mathematically. We start with the formula for a balancing centripetal force: θ is the angle by which the train is tilted due to the cant, r is the curve radius in meters, v is the speed in meters per second, and g is the standard gravity, approximately equal to 9.81 m/s²:

  9. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...