Search results
Results from the WOW.Com Content Network
Example of a parallel shear flow. In fluid dynamics, Rayleigh's equation or Rayleigh stability equation is a linear ordinary differential equation to study the hydrodynamic stability of a parallel, incompressible and inviscid shear flow. The equation is: [1] (″) ″ =,
The Eulerian specification of the flow field is a way of looking at fluid motion that focuses on specific locations in the space through which the fluid flows as time passes. [ 1 ] [ 2 ] This can be visualized by sitting on the bank of a river and watching the water pass the fixed location.
The function is a convolution of pseudo-Voigt with the intersection of the diffraction cone and a finite receiving slit length using two geometrical parameters, /, and /, where and are the sample and the detector slit dimensions in the direction parallel to the goniometer axis, and is the goniometer radius.
The Orr–Sommerfeld equation, in fluid dynamics, is an eigenvalue equation describing the linear two-dimensional modes of disturbance to a viscous parallel flow. The solution to the Navier–Stokes equations for a parallel, laminar flow can become unstable if certain conditions on the flow are satisfied, and the Orr–Sommerfeld equation determines precisely what the conditions for ...
In these instances, it can be useful to express internal shear stress as shear flow, which is found as the shear stress multiplied by the thickness of the section. An equivalent definition for shear flow is the shear force V per unit length of the perimeter around a thin-walled section. Shear flow has the dimensions of force per unit of length. [1]
To good approximation, the flow velocity oscillations are irrotational outside the boundary layer, and potential flow theory can be applied to the oscillatory part of the motion. This significantly simplifies the solution of these flow problems, and is often applied in the irrotational flow regions of sound waves and water waves .
Couette flow is frequently used in undergraduate physics and engineering courses to illustrate shear-driven fluid motion. A simple configuration corresponds to two infinite, parallel plates separated by a distance ; one plate translates with a constant relative velocity in its own plane.
law of the wall, horizontal velocity near the wall with mixing length model. In fluid dynamics, the law of the wall (also known as the logarithmic law of the wall) states that the average velocity of a turbulent flow at a certain point is proportional to the logarithm of the distance from that point to the "wall", or the boundary of the fluid region.