enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unevenly spaced time series - Wikipedia

    en.wikipedia.org/wiki/Unevenly_spaced_time_series

    Traces is a Python library for analysis of unevenly spaced time series in their unaltered form.; CRAN Task View: Time Series Analysis is a list describing many R (programming language) packages dealing with both unevenly (or irregularly) and evenly spaced time series and many related aspects, including uncertainty.

  3. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  4. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.

  5. Decomposition of time series - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_time_series

    An example of statistical software for this type of decomposition is the program BV4.1 that is based on the Berlin procedure.The R statistical software also includes many packages for time series decomposition, such as seasonal, [7] stl, stlplus, [8] and bfast.

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    Python: the "statsmodels" package includes models for time series analysis – univariate time series analysis: AR, ARIMA – vector autoregressive models, VAR and structural VAR – descriptive statistics and process models for time series analysis.

  7. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.

  8. RATS (software) - Wikipedia

    en.wikipedia.org/wiki/RATS_(software)

    RATS is a powerful program, which can perform a range of econometric and statistical operations. The following is a list of the major procedures in econometrics and time series analysis that can be implemented in RATS. All these methods can be used in order to forecast, as well as to conduct data analysis.

  9. Singular spectrum analysis - Wikipedia

    en.wikipedia.org/wiki/Singular_spectrum_analysis

    In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics , multivariate geometry, dynamical systems and signal processing .