Search results
Results from the WOW.Com Content Network
The phytol ester of chlorophyll a (R in the diagram) is a long hydrophobic tail which anchors the molecule to other hydrophobic proteins in the thylakoid membrane of the chloroplast. [5] Once detached from the porphyrin ring, phytol becomes the precursor of two biomarkers , pristane and phytane , which are important in the study of geochemistry ...
Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I [ 1 ] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ...
The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem. The antenna pigments are predominantly chlorophyll b, xanthophylls, and ...
One of the electrons of excited P680* will be transferred to a non-fluorescent molecule, which ionizes the chlorophyll and boosts its energy further, enough that it can split water in the oxygen evolving complex (OEC) of PSII and recover its electron. [citation needed] At the heart of the OEC are 4 Mn atoms, each of which can trap one electron ...
Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. [2] Its name is derived from the Greek words χλωρός (khloros, "pale green") and φύλλον (phyllon, "leaf"). [3] Chlorophyll allows plants to absorb energy from light.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
This is a cyclic process in which electrons are removed from an excited chlorophyll molecule (bacteriochlorophyll; P870), passed through an electron transport chain to a proton pump (cytochrome bc 1 complex; similar to the chloroplastic one), and then returned to the chlorophyll molecule. The result is a proton gradient that is used to make ATP ...
Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene, two pheophytin, two plastoquinone, two heme, one bicarbonate, 20 lipids, the Mn 4 CaO 5 cluster (including two chloride ions), one non heme Fe 2+ and two putative Ca 2+ ions per monomer. [4] There are several crystal structures of photosystem II. [5]