Search results
Results from the WOW.Com Content Network
Hermann Hankel (14 February 1839 – 29 August 1873) was a German mathematician. Having worked on mathematical analysis during his career, he is best known for introducing the Hankel transform and the Hankel matrix .
In control theory, Hankel singular values, named after Hermann Hankel, provide a measure of energy for each state in a system. They are the basis for balanced model reduction, in which high energy states are retained while low energy states are discarded. The reduced model retains the important features of the original model.
Hankel matrices are formed when, given a sequence of output data, a realization of an underlying state-space or hidden Markov model is desired. [3] The singular value decomposition of the Hankel matrix provides a means of computing the A , B , and C matrices which define the state-space realization. [ 4 ]
One of the first mathematicians to appreciate Grassmann's ideas during his lifetime was Hermann Hankel, whose 1867 Theorie der complexen Zahlensysteme. [5] […], he developed […] some of Hermann Grassmann's algebras and W.R. Hamilton's quaternions. Hankel was the first to recognise the significance of Grassmann's long-neglected writings and ...
It was first published by Hermann Hankel in 1861. [9] [10] This classical case relates the surface integral of the curl of a vector field over a surface (that is, the flux of ) in Euclidean three-space to the line integral of the vector field over the surface boundary.
The Hankel transform appears when one writes the multidimensional Fourier transform in hyperspherical coordinates, which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry. Consider a function () of a -dimensional vector r.
In the history of mathematics, the principle of permanence, or law of the permanence of equivalent forms, was the idea that algebraic operations like addition and multiplication should behave consistently in every number system, especially when developing extensions to established number systems.
This is a version of the Hankel contour that consists of just a linear mirror image across the real axis. In mathematics, a Hankel contour is a path in the complex plane which extends from (+∞,δ), around the origin counter clockwise and back to (+∞,−δ), where δ is an